\(\int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx\) [540]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 192 \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx=-\frac {(-1)^{3/4} \sqrt {a} (2 A-i B) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {(1+i) \sqrt {a} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {B \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\cot (c+d x)}} \]

[Out]

-(-1)^(3/4)*(2*A-I*B)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2)*cot(d*x+c)^
(1/2)*tan(d*x+c)^(1/2)/d-(1+I)*(A-I*B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2
)*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d+B*(a+I*a*tan(d*x+c))^(1/2)/d/cot(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.93 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.237, Rules used = {4326, 3678, 3682, 3625, 211, 3680, 65, 223, 209} \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx=-\frac {(-1)^{3/4} \sqrt {a} (2 A-i B) \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {(1+i) \sqrt {a} (A-i B) \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {B \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\cot (c+d x)}} \]

[In]

Int[(Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]))/Sqrt[Cot[c + d*x]],x]

[Out]

-(((-1)^(3/4)*Sqrt[a]*(2*A - I*B)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*S
qrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/d) - ((1 + I)*Sqrt[a]*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*
x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/d + (B*Sqrt[a + I*a*Tan[c + d*x]])/(d*
Sqrt[Cot[c + d*x]])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3678

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[B*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(f*(m + n))), x] +
Dist[1/(a*(m + n)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*A*c*(m + n) - B*(b*c*m + a*
d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3682

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rule 4326

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx \\ & = \frac {B \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\cot (c+d x)}}+\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)} \left (-\frac {a B}{2}+\frac {1}{2} a (2 A-i B) \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}} \, dx}{a} \\ & = \frac {B \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\cot (c+d x)}}-\left ((i A+B) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx+\frac {\left ((2 i A+B) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {(a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{2 a} \\ & = \frac {B \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\cot (c+d x)}}+\frac {\left (2 i a^2 (i A+B) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {\left (a (2 i A+B) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{2 d} \\ & = -\frac {(1-i) \sqrt {a} (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {B \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\cot (c+d x)}}+\frac {\left (a (2 i A+B) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d} \\ & = -\frac {(1-i) \sqrt {a} (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {B \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\cot (c+d x)}}+\frac {\left (a (2 i A+B) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ & = -\frac {\sqrt [4]{-1} \sqrt {a} (2 i A+B) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {(1-i) \sqrt {a} (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {B \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\cot (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.75 (sec) , antiderivative size = 233, normalized size of antiderivative = 1.21 \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx=\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}+\frac {-\frac {i \sqrt {2} \left (\frac {1}{2} a^2 (2 A-i B)-\frac {1}{2} i a^2 B\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}}{d \sqrt {i a \tan (c+d x)}}+\frac {\sqrt [4]{-1} a^2 (2 A-i B) \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \sqrt {1+i \tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}}{a}\right ) \]

[In]

Integrate[(Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]))/Sqrt[Cot[c + d*x]],x]

[Out]

Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((B*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d + (((-I)*Sqrt[2]*((
a^2*(2*A - I*B))/2 - (I/2)*a^2*B)*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Ta
n[c + d*x]])/(d*Sqrt[I*a*Tan[c + d*x]]) + ((-1)^(1/4)*a^2*(2*A - I*B)*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]]*S
qrt[1 + I*Tan[c + d*x]])/(d*Sqrt[a + I*a*Tan[c + d*x]]))/a)

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 315 vs. \(2 (155 ) = 310\).

Time = 0.68 (sec) , antiderivative size = 316, normalized size of antiderivative = 1.65

method result size
derivativedivides \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (B \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a -2 B \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+2 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}-\sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a \right )}{2 d \sqrt {\frac {1}{\tan \left (d x +c \right )}}\, \left (1+i \tan \left (d x +c \right )\right ) \tan \left (d x +c \right ) \sqrt {i a}\, a \sqrt {-i a}}\) \(316\)
default \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (B \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a -2 B \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+2 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}-\sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a \right )}{2 d \sqrt {\frac {1}{\tan \left (d x +c \right )}}\, \left (1+i \tan \left (d x +c \right )\right ) \tan \left (d x +c \right ) \sqrt {i a}\, a \sqrt {-i a}}\) \(316\)

[In]

int((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/cot(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/d*(a*(1+I*tan(d*x+c)))^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(B*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+
c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a-2*B*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(
1/2)*(I*a)^(1/2)*(-I*a)^(1/2)+2*I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)
+a)/(I*a)^(1/2))*a*(-I*a)^(1/2)-2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a
-3*a*tan(d*x+c))/(tan(d*x+c)+I))*(I*a)^(1/2)*a)/(1/tan(d*x+c))^(1/2)/(1+I*tan(d*x+c))/tan(d*x+c)/(I*a)^(1/2)/a
/(-I*a)^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 793 vs. \(2 (148) = 296\).

Time = 0.26 (sec) , antiderivative size = 793, normalized size of antiderivative = 4.13 \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx=\text {Too large to display} \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/cot(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-1/4*(2*sqrt(2)*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a/d^2)*log(-4*((A - I*B)*a*e^(I*d*x
 + I*c) - (I*d*e^(2*I*d*x + 2*I*c) - I*d)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) +
1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-I*d*x - I*c)/(I*A + B)) - 2*sqrt(2)*(d*e^
(2*I*d*x + 2*I*c) + d)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a/d^2)*log(-4*((A - I*B)*a*e^(I*d*x + I*c) - (-I*d*e^(2*
I*d*x + 2*I*c) + I*d)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d
*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-I*d*x - I*c)/(I*A + B)) + 4*sqrt(2)*(I*B*e^(3*I*d*x + 3*I*c)
- I*B*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c)
 - 1)) - (d*e^(2*I*d*x + 2*I*c) + d)*sqrt((4*I*A^2 + 4*A*B - I*B^2)*a/d^2)*log(-16*(3*(2*I*A + B)*a^2*e^(2*I*d
*x + 2*I*c) + (-2*I*A - B)*a^2 + 2*sqrt(2)*(a*d*e^(3*I*d*x + 3*I*c) - a*d*e^(I*d*x + I*c))*sqrt((4*I*A^2 + 4*A
*B - I*B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1
)))*e^(-2*I*d*x - 2*I*c)/(2*I*A + B)) + (d*e^(2*I*d*x + 2*I*c) + d)*sqrt((4*I*A^2 + 4*A*B - I*B^2)*a/d^2)*log(
-16*(3*(2*I*A + B)*a^2*e^(2*I*d*x + 2*I*c) + (-2*I*A - B)*a^2 - 2*sqrt(2)*(a*d*e^(3*I*d*x + 3*I*c) - a*d*e^(I*
d*x + I*c))*sqrt((4*I*A^2 + 4*A*B - I*B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c
) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/(2*I*A + B)))/(d*e^(2*I*d*x + 2*I*c) + d)

Sympy [F]

\[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx=\int \frac {\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \left (A + B \tan {\left (c + d x \right )}\right )}{\sqrt {\cot {\left (c + d x \right )}}}\, dx \]

[In]

integrate((a+I*a*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c))/cot(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(I*a*(tan(c + d*x) - I))*(A + B*tan(c + d*x))/sqrt(cot(c + d*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {\cot \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/cot(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(I*a*tan(d*x + c) + a)/sqrt(cot(d*x + c)), x)

Giac [F]

\[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {\cot \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/cot(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(I*a*tan(d*x + c) + a)/sqrt(cot(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx=\int \frac {\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{\sqrt {\mathrm {cot}\left (c+d\,x\right )}} \,d x \]

[In]

int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2))/cot(c + d*x)^(1/2),x)

[Out]

int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2))/cot(c + d*x)^(1/2), x)